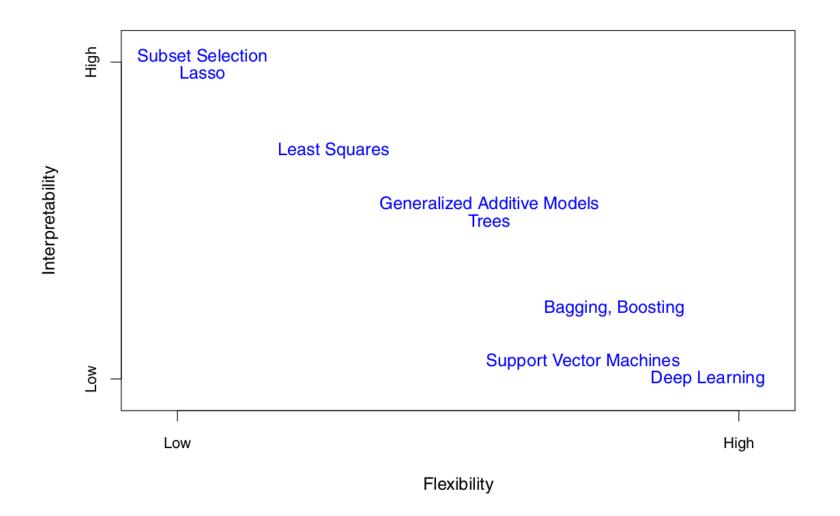
Modelos Aditivos Generalizados

Modelos Estadísticos Avanzados

Santiago Benitez-Vieyra

Where the wild things are

Where the wild things are



Quitando supuestos

Supuesto	solución
Normalidad	GLM
Independencia	LMM
Normalidad e independencia	GLMM
Normalidad y linealidad	GAM
Normalidad, independencia y linealidad	GAMM

Cómo quitamos la linealidad?

$$g(\mu_i) = \eta(X_{i1}, \dots, X_{ik})$$

GLM

$$g(\mu_i) = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki}$$

GAM

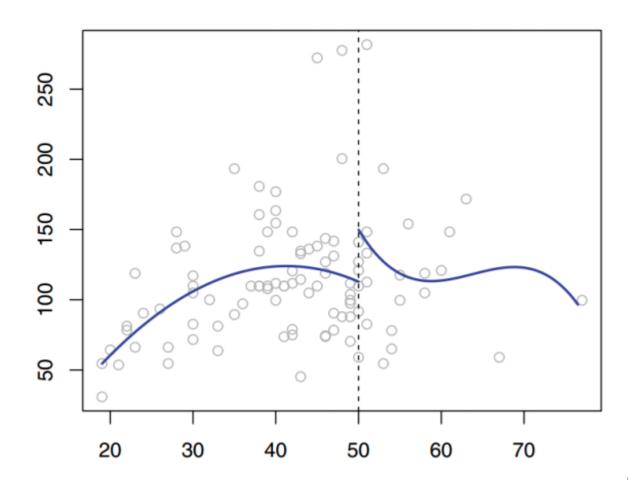
$$g(\mu_i) = \beta_0 + f_1 X_{1i} + \ldots + f_k X_{ki}$$

Primero: polinomios por piezas

Basis functions

¿Qué colocamos en f? la idea es tener una familia de funciones o trasformaciones que puedan ser aplicadas a las variables X.

En vez de ajustar un modelo lineal en X, ajustamos el modelo incluyendo estas funciones.



pero hay ciertos resquisitos...

Existen requisitos a cumplir por las funciones básicas

- · Debe ser *continuo*.
- · Debe ser *suave*.

En la práctica esto se logra imponiendo contricciones sobre la continuidad de la primera y la segunda derivada de la curva. El resultado de estas contricciones es un *spline*. Existen muchas funciones básicas como *thin plate splines* y *cubic splines*.

Complejidad

¿Cómo determinar la complejidad de la curva que ajustamos? Si usamos más nudos (y por lo tanto, más grados de libertad), la curva se va a ajustar cada vez mejor a los datos, pero va a resultar un modelo demasiado complejo.

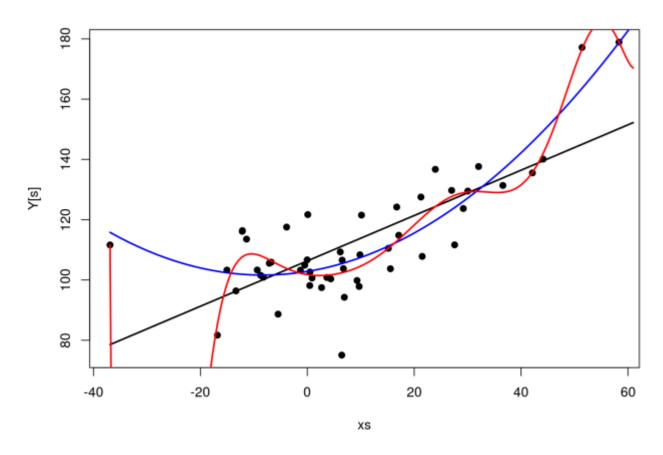
Bias-variance trade-off

En general, los modelos se ajustan minimizando algún tipo de medida del error (por ejemplo, los mínimos cuadrados.

$$1/n\sum (y_i-f(x_i))^2$$

Pero esta medida decrece a medida que se incrementa la *flexibilidad* del modelo (medida de su complejidad, como los grados de libertad).

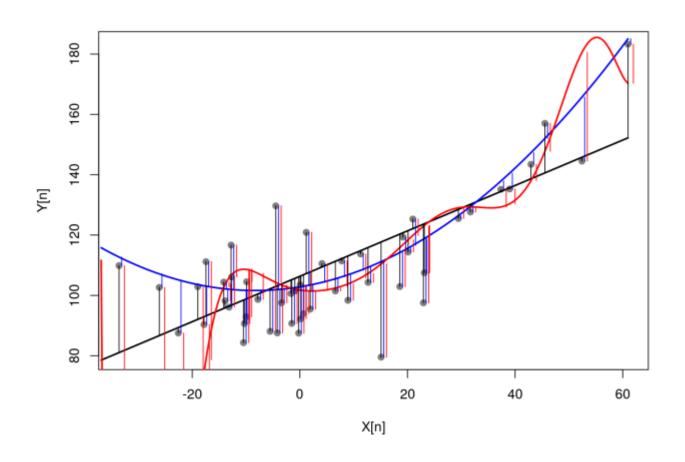
¿Qué pasa con un modelo complejo si luego intentamos utilizarlo para predecir?

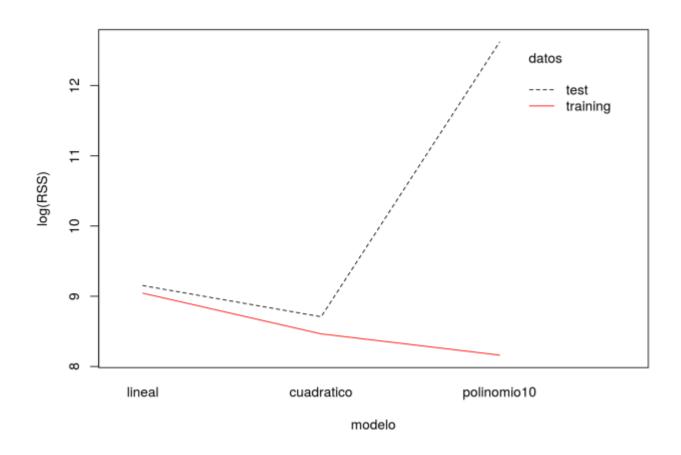


negro, d.f. = 2; rojo d.f. = 3; azul d.f. = 10.

Esto sucede porque estamos utilizando los residuos del set de *DATOS DE ENTRENAMIENTO* (training data).

Si usamos los residuso sobre *DATOS DE PRUEBA* (test data)



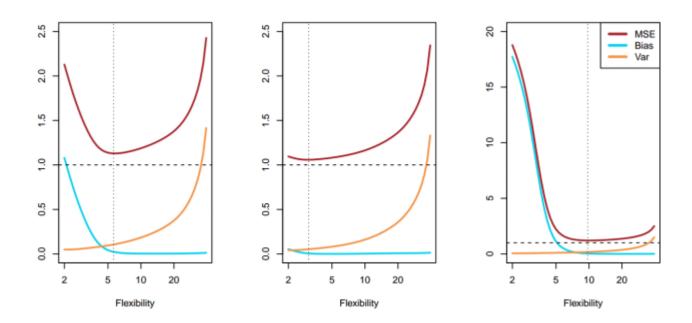


El valor esperado de *test MSE* (residuos de prueba)

$$E(MSE_{test}) = Var(\hat{f}\left(x_{0}
ight)) + [Bias(\hat{f}\left(x_{0}
ight))]^{2} + Var(\epsilon)$$

La *varianza* surge de los cambios en \hat{f} con diferentes datos de entrenamiento. Métodos más flexibles tienen más varianza.

El **sesgo** es el error introducido por tratar de aproximar el comportamiento de la vida real con un modelo. Modelos más sencillos tienen más sesgo. Este trade-off es la base de la **PENALIZACIÓN**.



* de James et al. 2014

Volviendo a los smoothing splines... minimizar

$$\sum (y_i-f(x_i))^2 + \lambda \int f''(t)^2 d(t)$$

donde el segúndo término es una penalización contra la variabilidad en f (f'' es la segunda derivada, el cambio en la pendiente). λ es un *parámetro de suavizado*.

- · Si $\lambda=0$ la penalidad se anula y el modelo puede ser tan complejo como sea necesario para que los residuos tengan el mínimo valor posible (en la práctica, puede volver los residuos iguales a cero).
- · Si $\lambda \to \infty$ la penalidad se vuelve muy grande y el modelo debe ser tan simple como sea posible.
- · Si un spline es minimizado de esta manera se vuelve un *smoothing spline*.
- · λ controla el trade-off entre sesgo y varianza.
- λ controla los *efective degreees of freedom*.

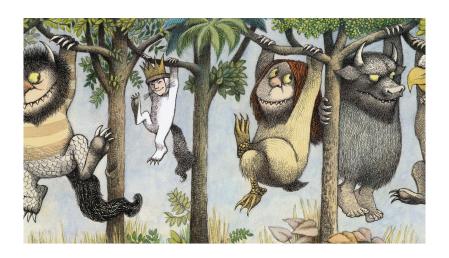
Selección de λ . Validación cruzada.

Para cada valor de λ en una serie se calculan los errores de la **predicción** partiendo el set de datos en datos de entrenamiento y prueba.

- Ordinary Cross Validation (OCV). Parte en set de datos k veces (habitualmente 5 o 10). BIC es una aproximación a OCV.
- · Leave One Out Cross Validation (LOOCV). Parte el set de datos *n* veces (en cada ocasión sólo queda un dato de pueba). *AIC* es una aproximación a LOOCV.
- Hay muchas versiones de CV, como GCV.

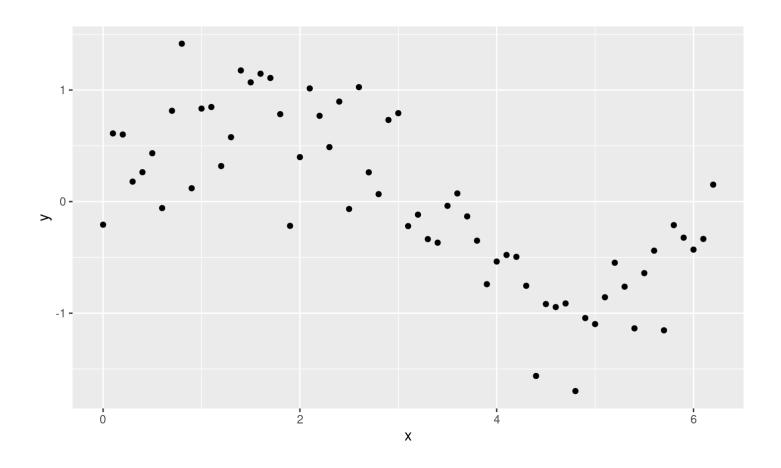
Selección de λ . Verosimilitud: ML y REML.

- Los métodos basados en los errores de la predicción tienen cierta tendencia a encontrar más de un mínimo local.
- · Los métodos basados en ML o REML tratan las funciones de suavizado como efectos aleatorios, de tal forma que λ puede ser tomado como un parámatro de varianza.
- · Esto surge de una interpretación Bayesiana de los GAMs...

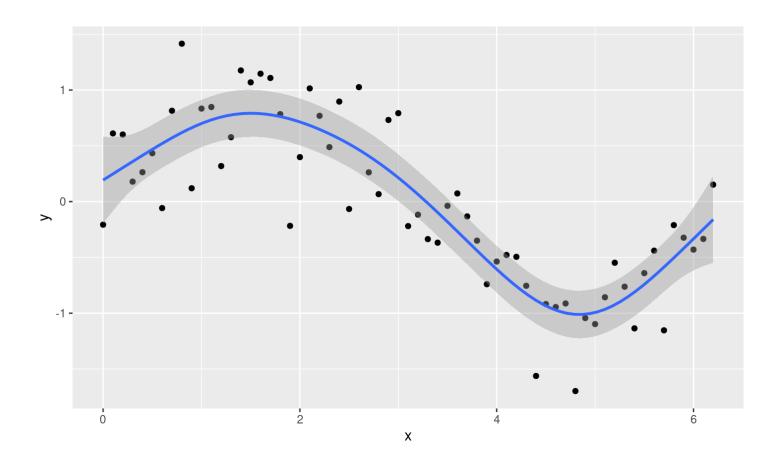


Paquete mgcv de Simon Wood

- Amplia variedad de splines.
- · Selección de variables por *shrinkage*.
- · Soporta métodos de verosimilitud y de validación cruzada para obtener λ .
- · Tiene una función especial (*bam*) para grandes sets de datos.
- · Omite las observaciones sin datos.
- · Soporta suavizados multidimensionales utilizando tensores y thin plate splines.
- Posee herramientas de diagnóstico generales y de diagnóstico de la concurvidad.



```
library(mgcv)
fit <- qam(y \sim s(x), method = "REML")
summary(fit)
Family: gaussian
Link function: identity
Formula:
v \sim s(x)
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
Approximate significance of smooth terms:
      edf Ref.df F p-value
s(x) 5.384 6.517 29.98 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.758 Deviance explained = 77.9%
-REML = 35.16 Scale est. = 0.13356 n = 63
```



gam.check(fit)

Method: REML Optimizer: outer newton full convergence after 5 iterations.

Gradient range [-5.408989e-06,3.208159e-06]

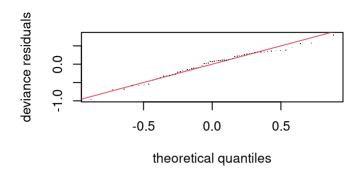
(score 35.15953 & scale 0.1335646).

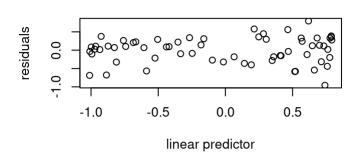
Hessian positive definite, eigenvalue range [2.066374,30.66895].

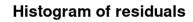
Model rank = 10 / 10

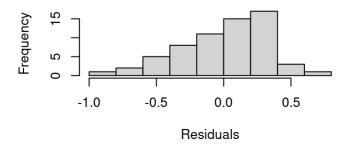
Basis dimension (k) checking results. Low p-value (k-index<1) may indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value s(x) 9.00 5.38 1.09 0.69



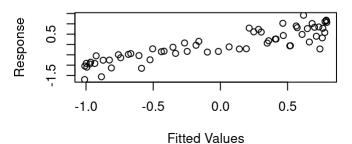






Response vs. Fitted Values

Resids vs. linear pred.



bases	utilidad
bs = 'tp'	thin plate splines por defecto
bs = 'cr'	cubic splines
bs = 'cc' o 'cp'	splines cíclicos
bs = 're'	efectos random
bs = 'fs'	factores (igual λ por nivel)
bs = 'sos'	splines esféricos
y hay mas	•••

Familias

binomial()
poisson()
Gamma()
inverse.gaussian()
nb()
tw()
mvn()
multinom()

betar()scat()gaulss()ziplss()twlss()cox.ph()gamals()

• ocat()

END